QUALI-PLEATED-BAG

Pleated filter bag

Recycled polypropylene

Polyester

Food-grade polypropylene

Features & Benefits

- Wide range of porosity from 0.2µm to 100µm, filter materials and media
- 100% welded and reinforced design
- High retention capacity thanks to its design (draining grids, multilayers, etc.)
- Low pressure losses
- · Contains no surfactants, binders, adhesives or silicone
- · Compatible with most pocket housings on the market

Standard dimensions

Lip seal outside diameter	180 mm			
External diameter external cage	152 mm			
Internal diameter	72 mm			
Length	Size 10 and 20 pocket equivalent			

Description

 $\mbox{\scriptsize QUALI-PLEATED-BAG}$ products are high-flow pleated filter elements that fit in place of a filter bag.

The large filter surface area combined with the high porosity media provide the QUALI-PLEATED-BAG with minimal pressure drop and excellent retention capabilities.

QUALI-PLEATED-BAG is assembled by heat welding to ensure maximum chemical compatibility and avoid the risk of contamination. Pressure and temperature resistance is enhanced by the injection moulded outer cage. Unlike existing technologies, this design gives the pleated filter bag greater rigidity and drastically increases the filtration area compared with conventional filter bags.

Consequently, once the 'QUALI-PLEATED-BAG' becomes blocked, it can be removed without difficulty.

QUALI-PLEATED-BAG incorporates a mesh spacer upstream and downstream of the filter media to ensure the pleats are spaced apart. This design increases filter life and maximises filtration throughput.

Building materials

Code	Material	Max. operating temperature	Application
QTPR	Recycled polypropylene	70°C	Reducing carbon impact
QТР	Food-grade polypropylene	70°C	FDA food application
QTPE	Polyester	110°C	High temperature and solvent

Range of filter media available

layer Standard version with maximum filter surface
ayer Thicker configuration for longer service life
Application for high temperatures
Industrial applications ter
Food application
nd More efficient food application

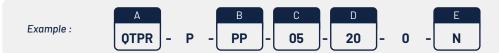
Consult us for chemical compatibility

Terms of service

Maximum pressure loss	3 bar
Recommended replacement pressure differential	2 bar

QUALI-PLEATED-BAG™

Pleated filter bac



Food-grade polypropylene

ORDER REFERENCE

A / Building materials

Code	Description
QTPR	Recycled polypropylene
QTP	Food-grade polypropylene
QTPE	Polyester

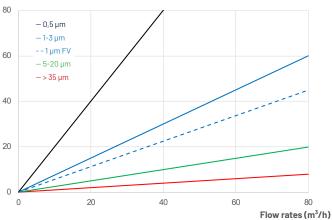
E / Seal materials

Code	Description
N	NBR
Е	EPDM
F	FPM

B / Filter media

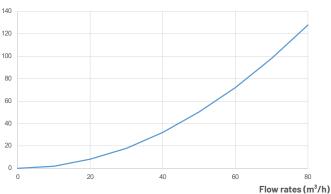
Description
Polypropylene (Single-layer pleat pack)
Polypropylene (multi-layer pleat pack)
Polyester
Borosilicate micro-fiberglass with polyester support
Borosilicate micro-fiberglass with polypropylene support
Nanoalumina fibers and micro-fiberglass with polyester support

C / Removal ratings


		ation encies ¹			Mate	erials		
Code	90%	99,9%	PP	PPX	PE	GF	GFF	GFF+
05	0,2 µm	0,5 µm	•	•				•
1	0,5 µm	1 µm	•	•		•	•	
3	1µm	3 µm	•	•				
5	3 µm	5 µm	•	•	•			
10	5 µm	10 µm	•	•				
20	10 µm	20 µm	•		•			
35	20 µm	35 µm	•					
50	25 µm	50 µm	•		•			
90	50 µm	90 µm	•					

 $^{^{\}rm I}$ Filtration efficiencies are determined in a single pass according to the modified NFX45-303 test protocol in the laboratory under high-flow operating conditions.

Typical flow rates :


Pressure drops for filtration media only

Pressure losses (mBar)

Pressure drops for a size 20 pleated filter bag²

Pressure losses (mBar)

 2 Typical initial pressure drop ΔP per 40″ element, water at 20°C, viscosity 1cP.

D /Sizes

Code	Description		
10	Size 10 (290 mm)		
20	Size 20 (530 mm)		
20+	Size 20+ (700mm)		

